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Abstract. Fixed field alternating gradient accelerators have many features which require careful modeling in simulation.
They accept beams over an extremely large momentum range, generally at least a factor of 2. They often use magnets whose
lengths are comparable to their apertures. The beam often makes large angles with respect to the magnet axis and pole
face normal. In some applications (muons in particular), the beam occupies a substantial fraction of the magnet aperture.
The longitudinal dynamics in these machines often differ significantly fromwhat one finds in more conventional machines
such as synchrotrons. These characteristics require that simulation codes be careful to avoid inappropriate approximations
in describing particle motion in FFAGs. One must properly treat the coordinate system geometry independently from the
magnetic fields. One cannot blindly assume that phase space variables are small. One must take magnet end fields properly
into account. Finally, one must carefully consider what it means to have a“matched” distribution that is injected into these
machines.
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INTRODUCTION

Accelerator tracking codes do not generally lay out magnetic fields in a global coordinate system and integrate particles
exactly in that coordinate system. They generally work locally about a reference curve, and assume that deviations from
that reference curve will be relatively small. This helps make the layout of beamlines more straightforward, improves
efficiency, and in some cases improves accuracy. Many of the assumptions that allow one to do this with a high degree
of accuracy for more conventional machines are slightly or significantly less accurate for FFAGs.

This paper outlines some features that should be treated properly in tracking codes that will be used for FFAGs. The
features that are emphasized are those which are often not included in conventional tracking codes. The purpose of
discussing them here is to aid an FFAG designer in evaluatingexisting tracking codes for their application, and to point
out features that they should consider including in tracking and analysis codes that they write. There are few, if any,
new results here: this paper should be seen as a review of existing knowledge, some of which may not be generally
well known.

TRUNCATED POWER SERIES

A truncated power series (TPS) of ordern is a function of thed-dimensional vectorz of the form

∑
ji>0

j1+···+ jd6n

ajz
j1
1 · · ·z jn

n . (1)

Much analysis in accelerator physics is done using TPSs. Forinstance, a set of first order TPS is used to represent
a linear map, which then gives the Courant-Snyder functions, the dispersion, and the momentum compaction. Chro-
maticities, tune shifts with amplitude, and resonance driving terms are calculated from higher-order TPSs.

The TPSs used in accelerator physics are generally a function of deviations of phase space variables from reference
values. Rapid convergence of a TPS as its order increases relies on these deviations being small relative to some
characteristic values. If one ignores coupling, these characteristic values are the magnet aperture (for transverse
dimensions), the RF frequency (for time), and a “reference”momentum (for transverse momentum and energy divided
by the speed of lightc). The “reference” momentum for these purposes is some momentum within the designed
operating range of the machine. In most synchrotrons, for example, it is an excellent approximation to assume that the
deviations are small: typically the largest variables relative to their characteristic values are the transverse positions,
generally being a couple percent of the pipe aperture.
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FIGURE 1. Trace of the horizontal transfer matrix for 10 cells as a function of energy for a non-scaling FFAG, computed using
COSY INFINITY for several different map orders.

FFAGs clearly do not have small phase space variables in one particular area: energy deviation. Since FFAGs
generally accelerate by a factor of 2 or more in momentum, theenergy deviation relative to the central energy is
usually at least 33%, if not more. Thus, one needs to be very careful about using a TPS with energy deviation as one
of the variables. Furthermore, smaller FFAG rings can have large angles relative to magnet axes, both because of the
small number of cells and the fact that FFAG cells generally bend both forward and backward over some part of their
energy range. Also, since the closed orbit deviation in an FFAG generally moves over a relatively large range in the
magnet, often the fraction of the magnet aperture (at least horizontally) occupied by the beam can be very large.

There are some codes, such as COSY INFINITY [1, 2, 3] and MARYLIE [4], which perform their analysis by
constructing a single power series to represent the particle motion through a section of beam line. If used blindly,
these types of codes will probably have difficulties representing the behavior in FFAGs, especially because of the large
energy range. For example, Fig. 1 shows that even computing the tunes over the entire working range of an FFAG
can be problematic for some lattices: even a 10th order computation fails to converge over the operating range of the
FFAG. However, if the computation is done for a single cell instead of 10 cells, the computation converges to the
correct answer. One can construct examples that fail to converge over the working range even for a single lattice cell.
Off-energy tracking tends to be especially problematic when representing the transfer map using a single power series.
Figure 2 shows strongly non-symplectic behavior in the tracking (note the particles converging toward the origin).
Even if the tracking were “symplectified,” the results wouldstill be highly inaccurate.

Truncated power series should not be abandoned entirely. They should instead be used carefully and appropriately.
On can, for instance, find a closed orbit at a given energy without using TPS methods (symplectic integration, for
example), and then compute a linear map about that closed orbit. This will give one energy-dependent tunes and
Courant-Snyder functions which will not suffer from errorsrelated to the nonzero energy deviation.
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FIGURE 2. Tracking using COSY INFINITY for a single FFAG lattice cell at the minimum working energy for the lattice.

Magnetic fields are often well represented by TPSs. The fact that the magnetic fields can be well represented by TPSs
while the resulting map cannot comes from the truncation of higher order terms in map composition: the composition
of two nth order TPSs results in an2th order TPS, and the truncation tonth order results in significant information
loss. This is also why a single cell will be more well represented than a group of cells or an entire ring: the single cell
map has had less truncation occur on it than the group of cells. One could thus imagine several levels of TPS use

1. Doing direct integration where magnetic fields are represented using TPSs.
2. Constructing TPS maps for individual elements.
3. Constructing TPS maps for sections of beamline (cells, for example).

I have demonstrated that at least in some cases, the third approach is problematic for FFAGs (Fig. 2). The first method
is almost certainly workable, and the second method may havesome utility (it is used in some cases in MAD [5, 6].

GEOMETRY

Most standard accelerator analysis and tracking codes define their coordinate system by the fields in the magnets.
Thus, the curvatureh of the coordinate system is related to the midplane verticalmagnetic fieldBy by h = qBy/p0,
whereq is the “reference particle” charge andp0 is a “reference momentum.”

For FFAGs, however, it is important to separate the coordinate system from the magnetic field. The geometry
should be that dictated by the geometry of the magnet [7, 8, 9]. Doing this is one of the express goals of the PTC
routines [10]. For example, consider a scaling FFAG, where the field in the midplane is of the formBy(θ)rk. Figure 3
shows the closed orbits, which are clearly not at a constant radius from the center of the machine. Using a coordinate
system about one of these closed orbits would add unnecessary complexity to computing the magnetic fields. The



FIGURE 3. Closed orbits at different energies in a scaling FFAG, drawn over the magnets, with a dot-dash line showing a circular
arc with a constant distance to the machine center.

FIGURE 4. Orbit offset in a gradient rectangular bend.

closed orbits don’t even make arcs of circles, making a description of the coordinate system difficult. Instead, using a
cylindrical coordinate system is obviously straightforward and the optimal approach.

Another example is the gradient rectangular bend, a gradient magnet where the lines of constant field are straight
lines. These are commonly used in non-scaling FFAGs. MAD [5,6] and other codes often represent these as a “sector
bend,” a magnet where the lines of constant field are arcs of circles, with the end pole faces rotated to be parallel to
each other. Due to the short length and large aperture of the magnets, one would generally not use a true sector bend
in a non-scaling FFAG; a rectangular bend is more appropriate. The sector bend with rotated pole faces allows one
the convenience of defining a coordinate system within the magnet based on the arc of a circle. However, in the true
rectangular bend, there is no orbit which is the arc of a circle. To approximate the relationship between bend field,
bend angle, and length that one finds in most tracking codes, one can set up the magnet so that if the orbit did bend in
an arc of a circle with a radius of curvature defined by the bendfield, then the integral of the gradient part of the field



would be zero. The offset∆x (see Fig. 4) to accomplish this is
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whereL is the length of the magnet along the axis andθ is the total bend angle of the arc1. Notice that this is
independent of the gradient in the magnet, and allows one to construct an approximate relationship between the bend
angle, the magnet length, and the dipole field in a gradient rectangular bend.

Implicit in the above is that there is no orbit whose transverse phase space coordinates are zero everywhere. Even
if one had only rectangular gradient bends with the offset (2), there would still in general be no energy with a closed
orbit whose coordinates, even in drifts, were zero (although it would be close if one used (2)). This is a necessary
consequence of separating the geometry from the magnetic field.

When one goes from a model with no end fields to one with true end fields, the coordinate system and layout of the
magnets should not be changing by that modification alone. Similarly, displacing or mispowering magnets for the study
of errors should not change the underlying coordinate system. Yet if one does not maintain an independence between
the coordinate system and the fields in the magnets, these will end up being tied together, and this will complicate the
analysis of the effects in question.

It is important to separate time of flight from geometry as well for FFAGs. Often codes will define all times relative
to the aforementioned reference particle, and RF cavities will be synchronized to that reference particle. In the design
of an FFAG for muon machines, one may design a machine based onthe behavior of a particle at the central energy,
but may want the RF cavities to be synchronized to the closed orbit of a particle with a different energy [11, 12]. One
may in fact want to vary the energy at which the particle is synchronized to without changing the lattice design (this
would involve slight changes in the RF frequency). The most straightforward way to handle this is to use the total
time rather than the time relative to a reference particle (ZGOUBI [13, 14] and ICOOL [15] do this). If one chooses
to use time relative to some fixed-velocity particle attached to the coordinate system (not necessarily an actual particle
trajectory), one must either be able to set the velocity of that particle independently of a “reference momentum” that
may have been used to define a coordinate system and/or fields (and to set that velocity greater than the speed of light
if needed), or to specify a phase that advances by a fixed amount on each turn.

MAGNET END FIELDS

In accelerator analysis, we often imagine magnets as havinga field that doesn’t change longitudinally within the
magnet, and abruptly goes to zero outside the magnet. In a real magnet, the field changes gradually from its intended
value within the magnet to zero outside the magnet. Maxwell’s equations will cause higher-order fields to appear as a
result of this field variation. The combination of the non-square field profile and the “Maxwellian” fields it generates
are known as “end fields” or “edge fields.”

Since FFAGs tend to have magnets whose lengths are short compared to their aperture, the relative importance of
these end fields tends to be larger in FFAGs than in conventional accelerators. Thus, tracking codes which model
FFAGs must have some method for handling the end fields. Thereare three possible ways of doing this:

1. Field maps
2. Generating fields using an end profile and Maxwell’s equations
3. Hard-edge approximations

Field maps are the best way to get a realistic field from a knownmagnet. However, they suffer from some practical
difficulties:

• Obtaining a field map requires having a magnet design, which one is unlikely to have at the machine design stage.
• A field map may require keeping a large amount of data
• The interpolation method may introduce noise, particularly for linear interpolation, which is the most straightfor-

ward way of handling field map data.
• The interpolation method may not satisfy Maxwell’s equations.

1 This is probably the only new result in this paper, and is arguably trivial.



• To integrate symplecticity, one needs vector potentials, whereas most field maps will instead contain field data.
• One cannot easily manipulate the field data to do a parametricstudy of the magnet parameters.

One may instead specify the longitudinal profile of the desired component of the field (e.g., the dipole and
quadrupole) and use Maxwell’s equations to compute the higher order components (this is done in COSY INFIN-
ITY [1, 2, 3], ZGOUBI [13, 14], and ICOOL [15]). This gives a smoothness related to the smoothness of the repre-
sentation of the longitudinal profile of the desired field component, which in principle can avoid the noise introduced
in linear interpolation of field maps. One can straightforwardly vary the end field profile and see its effects. The vector
potentials can be used directly to get symplectic tracking.Computing the higher order components is an order-by-
order iterative process, however, so the computation must be stopped at some order, which will lead to fields that don’t
satisfy Maxwell’s equations perfectly. Furthermore, thisiterative computation can be slow.

Computing the fields from Maxwell’s equations also requiresone to specify a magnet symmetry; this is equivalent
to choosing constants of integration in solving Maxwell’s equations. Take a quadrupole as an example. One could say
thatBy(x,0,z) = B2(z)x in the midplane for aB2(z) that one specifies. Or instead, one could specify that to lowest order
in x andy, By(x,y,z) = B2(z)x, Bx(x,y,z) = B2(z)y, andAz has only terms with cos2θ symmetry. These two are not
equivalent; which one is correct depends on the design of themagnet. For example, to maintain the scaling condition
in a scaling FFAG, one will try to design the magnets to maintain therk field profile in the midplane; thus, choosing
the constants of integration to specify the field in the midplane is probably the correct representation. Many methods
of designing superconducting magnets, on the other hand, try to create fields with given multipole components, and
thus one should probably specify those rather than the midplane field profile for such magnets.

At the earliest design stages, one does not even necessarilyknow what the magnet apertures will be, making the
choice of an end field profile difficult. Thus, in cases where one does not know much about the magnet design, or
where one wants to do rapid computations that take into account the magnet end fields, one can use so called hard-
edge approximations [16, 17]. In these approximations, oneintegrates in the body of the magnet as if the field did not
vary longitudinally, and applies a single transformationsat the entrance and exit of the magnet. These transformations
can be made correct to first order in the body field in the limit as the length of the varying magnet end field goes to
zero [17]. One has to apply the same considerations of symmetry to these hard-edge end fields as for the end fields
arising from a specified longitudinal field profile.

Most accelerator physicists are familiar with one kind of hard-edge approximation: the linear transformation
associated with dipole pole faces that are not perpendicular to the reference orbit. Some codes treat this as the following
transformation:

∆py = ∓qB0y tanφ , (3)

whereB0 is the dipole field,q is the particle charge, andφ is the angle that the perpendicular to the pole face makes
with respect to the reference orbit. If one assumes that the midplane field profile in the body of the magnet isBy0(x)
and it remains proportional to that as the field goes to zero, one finds that the transformation at the edge (to lowest
order) arises from the Lie generator [17, 18]

qy2px

2
√

p2− p2
x − p2

y

∆By0(x), (4)

where the coordinatex is with respect to the magnet edge, not the reference orbit. Not only does this generator induce
the transformation (3), but it also induces a (nonlinear) transformation in all the phase space variables except energy.
Furthermore, for the transformation inpy, it modifies the sense of (3): one should useBy at the point where the particle
exits the magnet, and one should use the angle that the actualparticle (not the reference particle) makes with respect
to the magnet pole face.

DISTRIBUTION MATCHING

When one is simulating a machine, one should in general start with a distribution that is matched (or nearly matched)
to the Courant-Snyder functions of the lattice at the injection point, since that is what should occur in the real
machine. Similarly, one should match the dispersion at the injection point as well, since FFAG lattices generally
don’t have dispersion-free sections. None of this is very surprising. However, in some FFAGs, one must also be aware
of longitudinal matching. This may be straightforward in a low frequency FFAG where the frequency is matched to the



revolution frequency of the beam’s current energy. However, for high-frequency systems, such as some muon FFAGs,
one must be aware of two aspects of longitudinal matching.

First of all, since there is dispersion in most of the machine, there will be a corresponding transformation in the time
of flight: if the horizontal position and momentum(x, p) are related to coordinates about the closed orbit(x̄, p̄) by

x = x̄+ x0(E) p = p̄+ p0(E) (5)

then the time of flight is related to an uncoupled time of flightτ̄ by

τ = τ̄ +
d p0

dE
x̄−

dx0

dE
p̄. (6)

If one has a large transverse emittance and high frequency RF, ignoring this correlation could lead to undesirable
emittance growth due to mismatch.

Secondly, in fixed, high-frequency machines, finding the optimal longitudinal ellipse shape is actually a nonlinear
problem [11, 12]. One should take this into account when choosing the distribution to track through the machine.
One must of course also consider how one would create that distribution in the real machine. Ignoring the optimal
distribution, or making an educated “guess” at the distribution, can give performance much worse than the capability
of the machine.

CONCLUSION

This paper has reviewed some features that should be considered when writing or reviewing tracking and analysis
codes for FFAGs. It has described why those features are of importance for correct tracking and analysis in FFAGs.
These features should at least be given consideration when writing or evaluating code for use in FFAGs.
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16. É. Forest, and J. Milutinović, Nucl. Instrum. Methods A269, 474–482 (1988).
17. J. S. Berg, “Higher Order Hard Edge End Field Effects,” inProceedings of EPAC 2004, Lucerne, Switzerland, EPAC,

European Physical Society Accelerator Group, 2004, pp. 2236–2238.
18. A. J. Dragt, and J. M. Finn,J. Math. Phys. 17, 2215–2227 (1976).
19. C. Horak, editor,Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee, IEEE, Piscataway, NJ, 2005.


